If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x-47=0
a = 1; b = -18; c = -47;
Δ = b2-4ac
Δ = -182-4·1·(-47)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-16\sqrt{2}}{2*1}=\frac{18-16\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+16\sqrt{2}}{2*1}=\frac{18+16\sqrt{2}}{2} $
| 20+17y=-6+15 | | 23=4m-13 | | x-(-17.6)=1.9 | | -39x+x+146=90 | | -39x+x+146=180 | | 5p+7=15-2p | | 74+4x=360 | | (6x-18)-14x=(14x+38)=180 | | -11=+3(b+5)=7 | | b-2.8=-9.08 | | 2+8r=-2(-5r+5) | | 5.9m=29.5 | | (-3+5i)-(7-2i)=0 | | A=150w=12.5 | | 50+50+(9x+8)=180 | | 75x^2+13=60x | | 9x−1∘+6x+58∘=87 | | x/53=2 | | 7y-3y-50=50 | | -2/3(6x27)=-4 | | 5p-4=p+14 | | a^2+10a+21=5 | | 10a+14=() | | (2x+4)^2-x-5)^2=26x | | 20+4x=4(-x+7)-40 | | -37=-v/6 | | 63+69+(4x+4)=180 | | 0=3x-7x+8 | | 63+69+4x+4=180 | | 5(m+1)+6=3(4+m)+(2m–1) | | 5x+7=37. | | 5x+77=37. |